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Abstract 

We consider a distributed server system and ask which policy should be used 
for assigning tasks to hosts. In our server, tasks are not preemptible. Also, 
the task's service demand is not known a priori. We are particularly con- 
cerned with the case where the workload is heavy-tailed, as is characteristic 
of many empirically measured computer workloads. We analyze several natural 
task assignment policies and propose a new one TAGS (Task Assignment based 
on Guessing Size). The TAGS algorithm is counterintuitive in many respects, 
including load unbalancing, non-work-conserving, and fairness. We find that 
under heavy-tailed workloads, TAGS can outperform all task assignment policies 
known to us by several orders of magnitude with respect to mean response time 
and mean slowdown, provided the system load is not too high. We also intro- 
duce a new practical performance metric for distributed servers called server 
expansion. Under the server expansion metric, TAGS significantly outperforms 
all other task assignment policies, regardless of system load. 
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1    Introduction 

In recent years, distributed servers have become commonplace because they al- 
low for increased computing power while being cost-effective and easily scalable. 

In a distributed server system, requests for service (tasks) arrive and must 
be assigned to one of the host machines for processing. The rule for assigning 
tasks to host machines is known as the task assignment policy. The choice of 
the task assignment policy has a significant effect on the performance perceived 
by users. Designing a distributed server system often comes down to choosing 
the "best" task assignment policy for the given model and user requirements. 
The question of which task assignment policy is "best" is an age-old question 
which still remains open for many models. 

In this paper we consider the particular model of a distributed server system 
in which tasks are not preemptible - i.e. we are concerned with applications 
where context switches are too costly. For example, one such application is batch 
computing environments where the hosts themselves are parallel processors and 
the tasks are parallel. Context switching between tasks involves reloading all the 
processors and memory to return them to the state before the context switch. 
Because context switching is so expensive in this environment, tasks are always 
simply run to completion. Note, the fact that context switches are too expensive 
does not preclude the possibility of killing a job and restarting it from scratch. 

We assume furthermore that no a priori information is known about the 
task at the time when the task arrives. In particular, the service demand of the 
task is not known. We assume all hosts are identical and there is no cost (time 
required) for assigning tasks to hosts. Figure 1 is one illustration of a distributed 
server. In this illustration, arriving tasks are immediately dispatched by the 
central dispatcher to one of the hosts and queue up at the host waiting for 
service, where they are served in first-come-first-served (FCFS) order. Observe 
however that our model in general does not preclude the possibility of having a 
central queue at the dispatcher where tasks might wait before being dispatched. 
It also does not preclude the possibility of an alternative scheduling discipline 
at the hosts, so long as that scheduling discipline does not require preempting 
tasks and does not rely on a priori knowledge about tasks. 

Our main performance goal, in choosing a task assignment policy, is to min- 
imize mean waiting time and more importantly mean slowdown. A task's slow- 
down is its waiting time divided by its service demand. All means are per-task 
averages. We consider mean slowdown to be more important than mean wait- 
ing time because it is desirable that a task's delay be proportional to its size. 
That is, in a system in which task sizes are highly variable, users are likely to 
anticipate short delays for short tasks, and are likely to tolerate long delays for 
longer tasks. Later in the paper we introduce a new performance metric, called 



server expansion which is related to mean slowdown. A secondary performance 
goal is fairness. We adopt the standard definition of fairness that says all tasks, 
large or small, should experience the same expected slowdown. In particular, 
large tasks shouldn't be penalized - slowed down by a greater factor than are 
small tasks.1 

Consider some task assignment policies commonly proposed for distributed 
server systems: In the Random task assignment policy, an incoming task is sent 
to Host i with probability 1/h, where h is the number of hosts. This policy 
equalizes the expected number of tasks at each host. In Round-Robin task as- 
signment, tasks are assigned to hosts in a cyclical fashion with the ith task 
being assigned to Host i mod h. This policy also equalizes the expected number 
of tasks at each host, and has slightly less variability in interarrival times than 
does Random. In Shortest-Queue task assignment, an incoming task is imme- 
diately dispatched to the host with the fewest number of tasks. This policy has 
the benefit of trying to equalize the instantaneous number of tasks at each host, 
rather than just the expected number of tasks. All the above policies have the 
property that the tasks arriving at each host are serviced in FCFS order. 

The literature tells us that Shortest-Queue is in fact the best task assign- 
ment policy in a model where the following conditions are met: (1) there is no 
a priori knowledge about tasks, (2) tasks are not preemptible, (3) each host 
services tasks in a FCFS order, (4) incoming tasks are immediately dispatched 
to a host, and (5) the task size distribution is Exponential (see Section 2). 

If one removes restriction (4), it is possible to do even better. What we'd 
really like to do is send a task to the host which has the least total outstanding 
work (work is the sum of the task sizes at the host) because that host would 
afford the task the smallest waiting time. However, we don't know a priori 
which host currently has the least work, since we don't know task sizes. It 
turns out this is actually easy to get around: we simply hold all tasks at the 
dispatcher in a FCFS queue, and only when a host is free does it request the 
next task. It is easy to prove that this holding method is exactly equivalent to 
immediately dispatching arriving tasks to the host with least outstanding work 
(see [6] for a proof and Figure 2 for an illustration). We will refer to this policy 
as Least-Work-Remaining since it has the effect of sending each task to the host 
with the currently least remaining work. Observe that Least-Work-Remaining 
comes closest to obtaining instantaneous load balance. 

It may seem that Least-Work-Remaining is the best possible task assign- 
ment policy. Previous literature shows that Least-Work-Remaining outper- 
forms all of the above previously-discussed policies under very general conditions 
(see Section 2). Previous literature also suggests that Least-Work-Remaining 

1 For example, Processor-Sharing (which requires infinitely-many preemptions) is ultimately 
fair in that every task experiences the same expected slowdown. 
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Figure 1: Illustration of a distributed server. 
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Figure 2: Two equivalent ways of implementing the Least-Work-Remaining 
task assignment policy, (a) Shows incoming tasks immediately being dispatched 
to the host with the least remaining work, but this requires knowing a priori 
the sizes of the tasks at the hosts, (b) Shows incoming tasks pooled at a FCFS 
queue at the dispatcher. There are no queues at the individual hosts. Only when 
a host is free does it request the next task. This implementation does not require 
a priori knowledge of the task sizes, yet achieves the same effect as (a). 



may be the optimal (best possible) task assignment policy in the case where the 
task size distribution is Exponential (see Section 2 for a detailed statement of 
the previous literature). 

But what if task size distribution is not Exponential? We are motivated in 
this respect by the increasing evidence for high variability in task size distri- 
butions, as seen in many measurements of computer workloads. In particular, 
measurements of many computer workloads have been shown to fit heavy-tailed 
distributions with very high variance, as described in Section 3 - much higher 
variance than that of an Exponential distribution. Is there a better task as- 
signment policy than Least-Work-Remaining when the task size variability is 
characteristic of empirical workloads? In evaluating various task assignment 
policies, we will be interested in understanding the influence of task size vari- 
ability on the decision of which task assignment policy is best. For analytical 
tractability, we will assume that the arrival process is Poisson - our simulations 
indicate that the variability in the arrival process is much less critical to choosing 
a task assignment policy than is the variability in the task size distribution. 

In this paper we propose a new algorithm called TAGS - Task Assignment 
by Guessing Size which is specifically designed for high variability workloads. 
We will prove analytically that when task sizes show the degree of variability 
characteristic of empirical (measured) workloads, the TAGS algorithm can out- 
perform all the above mentioned algorithms by several orders of magnitude. In 
fact, we will show that the more heavy-tailed the task size distribution, the 
greater the improvement of TAGS over the other task assignment algorithms. 

The above improvements are contingent on the system load not being too 
high. 2 In the case where the system load is high, we show that all the task 
assignment policies have such poor performance that they become impractical, 
and TAGS is especially negatively affected. In practice, if the system load is 
too high to achieve reasonable performance, one adds new hosts to the server 
(without increasing the outside arrival rate), thus dropping the system load, 
until the system behaves as desired. We refer to the "number of new hosts which . 
must be added" above as the server expansion requirement. We will show that 
TAGS outperforms all the previously-mentioned task assignment policies with 
respect to the server expansion metric (i.e., given any initial load, TAGS requires 
far fewer additional hosts to perform well). 

We will describe three flavors of TAGS. The first, called TAGS-opt-meanslowdown 
is designed to minimize mean slowdown. The second, called TAGS-opt-meanwaitingtime 

2For a distributed server, system load is defined as follows: 

System load = Outside arrival rate  •  Mean task size / Number of hosts 

For example, a system with 2 hosts and system load .5 has same outside arrival rate as a 
system with 4 hosts and system load .25. Observe that a 4 host system with system load p 
has twice the outside arrival rate of a 2 host system with system load p. 



is designed to minimize mean waiting time. Although very effective, these 
algorithms are not fair in their treatment of tasks. The third flavor, called 
TAGS-opt-fairness, is designed to optimize fairness. While managing to be 
fair, TAGS-opt-fairness still achieves mean slowdown and mean waiting time 
close to the other flavors of TAGS. 

Section 2 elaborates in more detail on previous work in this area. Sec- 
tion 3 provides the necessary background on measured task size distributions 
and heavy-tails. Section 4 describes the TAGS algorithm and all its flavors. Sec- 
tion 5 shows results of analysis for the case of 2 hosts and Section 6 shows 
results of analysis for the multiple-host case. Section 7 explores the effect of 
less-variable job size distributions. Lastly, we conclude in Section 8. Details on 
the analysis of TAGS are described in the Appendix. 

2    Previous Work on Task Assignment 

2.1    Task assignment with no preemption 

The problem of task assignment in a model like ours (no preemption and no a 
priori knowledge) has been extensively studied, but many basic questions remain 
open. 

One subproblem which has been solved is that of task assignment under the 
restriction that all tasks be immediately dispatched to a host upon arrival and 
each host services its tasks in FCFS order. Under this restricted model, it has 
been shown that when the task size distribution is exponential and the arrival 
process is Poisson, then the Shortest-Queue task assignment policy is optimal, 
Winston [19]. In this result, optimality is defined as maximizing the discounted 
number of tasks which complete by some fixed time t. Ephremides, Varaiya, 
and Walrand [5] showed that the Shortest-Queue task assignment policy also 
minimizes the expected total time for the completion of all tasks arriving by 
some fixed time t, under an exponential task size distribution and arbitrary 
arrival process. The actual performance of the Shortest-Queue policy is not 
known exactly, but the mean response time is approximated by Nelson and 
Phillips [11], [12]. Whitt has shown that as the variability of the task size 
distribution grows, the Shortest-Queue policy is no longer optimal [18]. Whitt 
does not suggest which policy is optimal. 

The scenario has also been considered, under the same restricted model 
described in the above paragraph, but where the ages (time in service) of the 
tasks currently serving are known, so that it is possible to compute an arriving 
task's expected delay at each queue. In this scenario, Weber [17] considers the 
Shortest-Expected-Delay rule which sends each task to the host with the 



least expected work (note the similarity to the Least-Work-Remaining policy). 
Weber shows that this rule is optimal for task size distributions with increasing 
failure rate (including Exponential). Whitt [18] shows that there exist task size 
distributions for which this rule is not optimal. 

Wolff, [20] has proven that Least-Work-Remaining is the best possible task 
assignment policy out of all policies which do not make use of task size. This 
result holds for any distribution of task sizes and for any arrival process. 

Another model which has been considered is the case of no preemption 
but where the size of each task is known at the time of arrival of the task. 
Within this model, the SITA-E algorithm (see [7]) has been shown to outperform 
the Random, Round-Robin, Shortest-Queue, and Least-Work-Remaining algo- 
rithms by several orders of magnitude when the task size distribution is heavy- 
tailed. In contrast to SITA-E, the TAGS algorithm does not require knowledge 
of task size. Nevertheless, for not-too-high system loads (< .5), TAGS improves 
upon the performance of SITA-E by several orders of magnitude for heavy-tailed 
workloads. 

2.2    When preemption is allowed and other generalizations 

Throughout this paper we maintain the assumption that tasks are not pre- 
emptible. That is, once a task starts running, it can not be stopped and re- 
continued where it left off. By contrast there exists considerable work on the 
very different problem where tasks are preemptible (see [8] for many citations). 

Other generalizations of the task assignment problem include the scenario 
where the hosts are heterogeneous or there are multiple resources under con- 
tention. 

The idea of purposely unbalancing load has been suggested previously in [3] 
and in [1], under different contexts from our paper. In both these papers, it 
is assumed that task sizes are known a priori. In [3] a distributed system with 
preemptible tasks is considered. It is shown that in the preemptible model, 
mean waiting time is minimized by balancing load, however mean slowdown is 
minimized by unbalancing load. In [1], real-time scheduling is considered where 
tasks have firm deadlines. In this context, the authors propose "load profiling," 
which "distributes load in such a way that the probability of satisfying the 
utilization requirements of incoming tasks is maximized." 



3    Heavy Tails 

As described in Section 1, we are concerned with how the distribution of task 
sizes affects the decision of which task assignment policy to use. 

Many application environments show a mixture of task sizes spanning many 
orders of magnitude. In such environments there are typically many small tasks, 
and fewer large tasks. Much previous work has used the exponential distribution 
to capture this variability, as described in Section 2. However, recent measure- 
ments indicate that for many applications the exponential distribution is a poor 
model and that a heavy-tailed distribution is more accurate. In general a heavy- 
tailed distribution is one for which 

Pi{X>x}~x-a, 

where 0 < a < 2. The simplest heavy-tailed distribution is the Pareto distribu- 
tion, with probability mass function 

f(x) = akax-a-1,    a,k>%   x>k, 

and cumulative distribution function 

F{x) - Pr{X <x} = l- (k/x)a. 

A set of task sizes following a heavy-tailed distribution has the following prop- 
erties: 

1. Decreasing failure rate: In particular, the longer a task has run, the longer 
it is expected to continue running. 

2. Infinite variance (and if a < 1, infinite mean). 

3. The property that a very small fraction (< 1%) of the very largest tasks 
make up a large fraction (half) of the load. We will refer to this important 
property throughout the paper as the heavy-tailed property. 

The lower the parameter a, the more variable the distribution, and the more 
pronounced is the heavy-tailed property, i.e. the smaller the fraction of large 
tasks that comprise half the load. 

As a concrete example, Figure 3 depicts graphically on a log-log plot the 
measured distribution of CPU requirements of over a million UNIX processes, 
taken from paper [8]. This distribution closely fits the curve 

PrjProcess Lifetime > T} = 1/T. 

In [8] it is shown that this distribution is present in a variety of computing en- 
vironments, including instructional, research, and administrative environments. 



In fact, heavy-tailed distributions appear to fit many recent measurements 
of computing systems. These include, for example: 

• Unix process CPU requirements measured at Bellcore: 1 < a < 1.25 [10]. 

• Unix process CPU requirements, measured at UC Berkeley: a « 1 [8]. 

• Sizes of files transferred through the Web: 1.1 < a < 1.3 [2, 4]. 

• Sizes of files stored in Unix filesystems: [9]. 

• I/O times: [14]. 

• Sizes of FTP transfers in the Internet: .9 < a < 1.1 [13]. 

In most of these cases where estimates of a were made, a tends to be close to 
1, which represents very high variability in task service requirements. 

In practice, there is some upper bound on the maximum size of a task, 
because files only have finite lengths. Throughout this paper, we therefore model 
task sizes as being generated i.i.d. from a distribution that follows a power law, 
but has an upper bound - a very high one. We refer to this distribution as a 
Bounded Pareto. It is characterized by three parameters: a, the exponent of 
the power law; k, the smallest possible observation; and p, the largest possible 
observation. The probability mass function for the Bounded Pareto B(k,p, a) 
is defined as: 

f{x)=i^Wivrx~a~l k<*<p- a) 

In this paper, we will vary the a-parameter over the range 0 to 2 in order 
to observe the effect of changing variability of the distribution. To focus on 
the effect of changing variance, we keep the distributional mean fixed (at 3000) 
and the maximum value fixed (at p = 1010), which correspond to typical values 
taken from [2]. In order to'keep the mean constant, we adjust k slightly as a 
changes (0 < k < 1500). 

Note that the Bounded Pareto distribution has all its moments finite. Thus, 
it is not a heavy-tailed distribution in the sense we have defined above. How- 
ever, this distribution will still show very high variability if k < p. For exam- 
ple, Figure 4 (right) shows the second moment E {X2} of this distribution as a. 
function of a for p = 1010, where k is chosen to keep E {X} constant at 3000, 
(0 < k < 1500). The figure shows that the second moment explodes exponen- 
tially as a declines. Furthermore, the Bounded Pareto distribution also still 
exhibits the heavy-tailed property and (to some extent) the decreasing failure 
rate property of the unbounded Pareto distribution. We mention these prop- 
erties because they are important in determining our choice of the best task 
assignment policy. 
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Figure 3: Measured distribution of UNIX process CPU lifetimes, taken from 
[HD97]. Data indicates fraction of jobs whose CPU service demands exceed T 
seconds, as a function ofT. 
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Figure 4: Parameters of the Bounded Pareto Distribution (left); Second Moment 
ofB(k, 1010, a) as a function of a, when E {X} = 3000 (right). 
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Figure 5: Illustration of the flow of tasks in the TAGS algorithm. 

4    The TAGS algorithm 

This section describes the TAGS algorithm. 

Let h be the number of hosts in the distributed server. Think of the hosts 
as being numbered: 1,2,..., h. The ith host has a number s, associated with 
it, where Si < s2 < ... < «/,. 

TAGS works as shown in Figure 5: All incoming tasks are immediately dis- 
patched to Host 1. There they are serviced in FCFS order. If they complete 
before using up sy amount of CPU, they simply leave the system. However, if 
a task has used si amount of CPU at Host 1 and still hasn't completed, then 
it is killed (remember tasks cannot be preempted because that is too expensive 
in our model). The task is then put at the end of the queue at Host 2, where 
it is restarted from scratch3. Each host services the tasks in its queue in FCFS 
order. If a task at host i uses up s,- amount of CPU and still hasn't completed 
it is killed and put at the end of the queue for Host i+1. In this way, the TAGS 
algorithm "guesses the size" of each task, hence the name. 

The TAGS algorithm may sound counterintuitive for a few reasons: First of 
all, there's a sense that the higher-numbered hosts will be underutilized and the 

3Note, although the task is restarted, it is still the same task, of course. We are therefore 
careful in our analysis not to assign it a new service requirement. 

10 



first host overcrowded since all incoming tasks are sent to Host 1. An even more 
vital concern is that the TAGS algorithm wastes a large amount of resources by 
killing tasks and then restarting them from scratch.4 There's also the sense that 
the big tasks are especially penalized since they're the ones being restarted. 

TAGS comes in 3 flavors; these only differ in how the s,'s are chosen. In 
TAGS-opt-meanslowdown, the s,-'s are chosen so as to optimize mean slowdown. 
In TAGS-opt-meanwaitingtime, the s,-'s are chosen so as to optimize mean wait- 
ing time. As we'll see, TAGS-opt-meanslowdown and TAGS-opt-meanwaitingtime 
are not necessarily fair. In TAGS-opt-f airness the s,'s are chosen so as to opti- 
mize fairness. Specifically, the tasks whose final destination is Host i experience 
the same expected slowdown under TAGS-opt-f airness as do the tasks whose 
final destination is Host j, for all i and j. 

TAGS may seem reminiscent of multi-level feedback queueing, but they are not 
related. In multi-level feedback queueing there is only a single host with many 
virtual queues. The host is time-shared and tasks are preemptible. When a task 
uses some amount of service time it is transferred (not killed and restarted) to 
a lower priority queue. Also, in multi-level feedback queueing, the tasks in that 
lower priority queue are only allowed to run when there are no tasks in any of 
the higher priority queues. 

5    Analysis and Results and For the Case of 2 
Hosts 

This section contains the results of our analysis of the TAGS task assignment 
policy and other task assignment policies. In order to clearly explain the effect 
of the TAGS algorithm, we limit the discussion in this section to the case of 2 
hosts. In this case we refer to the tasks whose final destination is Host 1 as 
the small tasks and the tasks whose final destination is Host 2 as the big tasks. 
Until Section 5.3, we will always assume the system load is 0.5 and there are 2 
hosts. In Section 5.3, we will consider other system loads, but still stick to the 
case of 2 hosts. Finally, in Section 6 we will consider distributed servers with 
multiple hosts. 

We evaluate several task assignment policies, all as a function of a, where a 
is the variance-parameter for the Bounded Pareto task size distribution, and a 
ranges between 0 and 2. Recall from Section 3 that the lower a is, the higher the 
variance in the task size distribution. Recall also that empirical measurements 
of task size distributions often show a « 1. 

4My dad, Micha Harchol, would add that there's also the psychological concern of what 
the angry user might do when he's told his task's been killed to help the general good. 

11 



We will evaluate the Random, Least-Work-Remaining, and TAGS policies. 
The Round-Robin policy (see Section 1) will not be evaluated directly be- 
cause we showed in a previous paper [7] that Random and Round-Robin have 
almost identical performance. As we'll explain in Section 5.1, our analysis of 
Least-Work-Remaining is only an approximation, however we have confidence 
in this approximation because our extensive simulation in paper [7] showed it 
to be quite accurate in this setting. As we'll discuss in Section 5.1, our analysis 
of TAGS is also an approximation, though to a lesser degree. 

Figure 6(a) below shows mean slowdown under TAGS-opt-slowdown as com- 
pared with the other task assignment policies. The y-axis is shown on a log 
scale. Observe that for very high a, the performance of all the task assign- 
ment policies is comparable and very good, however as a decreases, the perfor- 
mance of all the policies degrades. The Least-Work-Remaining policy consis- 
tently outperforms the Random policy by about an order of magnitude, how- 
ever the TAGS-opt-slowdown policy offers several orders of magnitude fur- 
ther improvement: At a = 1.5, the TAGS-opt-slowdown policy outperforms 
the Least-Work-Remaining policy by 2 orders of magnitude; at awl, the 
TAGS-opt-slowdown policy outperforms the Least-Work-Remaining policy by 
over 4 orders of magnitude; at a = A the the TAGS-opt-slowdown policy out- 
performs the Least-Work-Remaining policy by over 9 orders of magnitude, and 
this increases to 15 orders of magnitude for a = .2! 

Figures 6(b) and (c) show mean slowdown of TAGS-opt-waitingtime and 
TAGS-opt-f airness, respectively, as compared with the other task assignment 
policies. Since TAGS-opt-waitingtime is optimized for mean waiting time, 
rather than mean slowdown, it is understandable that its performance im- 
provements with respect to mean slowdown are not as dramatic as those of 
TAGS-opt-slowdown. However, what's interesting is that the performance of 
TAGS-opt-f airness is very close to that of TAGS-opt-slowdown and yet TAGS-opt-f airness 
has the additional benefit of fairness. 

Figure 7 is identical to Figure 6 except that in this case the performance 
metric is mean waiting time, rather than mean slowdown. Again the TAGS al- 
gorithm, especially TAGS-opt-waitingtime, shows several orders of magnitude 
improvement over the other task assignment policies. 

Why does the TAGS algorithm work so well?    Intuitively, it seems that 
Least-Work-Remaining should be the best performer, since Least-Work-Remaining 
sends each task to where it will individually experience the lowest waiting time. 
The reason why TAGS works so well is 2-fold: The first part is variance reduction 
(Section 5.1) and the second part is load unbalancing (Section 5.2). 

12 
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Figure 6: Mean slowdown for districted server with 2 hosts and system 
load .5 under (a) TAGS-opt-slowdown, (b) TAGS-opt-waitingtime, and (c) 
TAGS-opt-fairness as compared with the Least-Work-Remaining and Random 
task assignment policies. 
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Figure 7: Mean waiting time for distributed server with 2 hosts and system 
load .5 under (a) TAGS-opt-slowdown, (b) TAGS-opt-waitingtime, and (c) 
TAGS-opt-fairness as compared with the Least-Work-Remaining and Random 
task assignment policies. 



5.1    Variance Reduction 

Variance reduction refers to reducing the variance of task sizes that share the 
same queue. Intuitively, variance reduction is important for improving perfor- 
mance because it reduces the chance of a small task getting stuck behind a big 
task in the same queue. This is stated more formally in Theorem 1 below, which 
is derived from the Pollaczek-Kinchin formula. 

Theorem 1 Given an M/G/l FCFS queue, where the arrival process has rate 
X, X denotes the service time distribution, and p denotes the utilization (p — 
XE{X}). Let W be a task's waiting time in queue, S be its slowdown, and Q 
be the queue length on its arrival. Then, 

\ji rv-2 1 
E{W}    =  i [Pollaczek-Kinchin formula] 

E{S]    =    E{W/X} = E{W}-E{X~1} 

E{Q}    =    XE{W} 

Proof: The slowdown formulas follow from the fact that W and X are indepen- 
dent for a FCFS queue, and the queue size follows from Little's formula.       ■ 

Observe that every metric for the simple FCFS queue is dependent on 
E l^2}, the second moment of the service time. Recall that if the workload 
is heavy-tailed, the second moment of the service time explodes, as shown in 
Figure 4. 

We now discuss the effect of high variability in task sizes on a distributed 
server system under the various task assignment policies. 

Random Task Assignment The Random policy simply performs Bernoulli 
splitting on the input stream, with the result that each host becomes an inde- 
pendent M/B(k,p,a)/l queue. The load at the «th host, pi, is equal to the 
system load, p. The arrival rate at the ?th host is l//i-fraction of the total 
outside arrival rate. Theorem 1 applies directly, and all performance metrics 
are proportional to the second moment of B(k,p, a). Performance is generally 
poor because the second moment of the B(k,p, a) is high. 

Round Robin The Round Robin policy splits the incoming stream so each 
host sees an Eh/B(k,p,a)/1 queue, with utilization pi = p. This system has 
performance close to the Random policy since it still sees high variability in 
service times, which dominates performance. 
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Least-Work-Remaining The Least-Work-Remaining policy is equivalent 
to an M/G/h queue, for which there exist known approximations, [16],[21]: 

£ fy21 
E {QM/G/h} = E {QM/M/h} ■ 2, 

where X denotes the service time distribution, and Q denotes queue length. 
What's important to observe here is that the mean queue length, and therefore 
the mean waiting time and mean slowdown, are all proportional to the second 
moment of the service time distribution, as was the case for the Random and 
Round-Robin task assignment policies. In fact, the performance metrics are all 

proportional to the squared coefficient of variation (C2 = E] |) of the service 
time distribution. 

TAGS The TAGS policy is the only one which reduces the variance of task sizes 
at the individual hosts. Let p{ be the fraction of tasks whose final destination 
is Host i. Consider the tasks which queue at Host i: First there are those 
tasks which are destined for Host i. Their task size distribution is B(si_1,si, a) 
because the original task size distribution is a Bounded Pareto. Then there are 
the tasks which are destined for hosts numbered greater than i. These tasks are 
all capped at size st. Thus the second moment of the task size distribution at 
Host i is lower than the second moment of the original B(k,p, a) distribution 
(for all hosts except the highest-numbered host, it turns out). The full analysis 
of the TAGS policy is presented in the Appendix and is relatively straightforward 
except for one point which we have to fudge and which we explain now: For 
analytic convenience, we need to be able to assume that the tasks arriving at 
each host form a Poisson Process. This is of course true for Host 1. However 
the arrivals at Host i are those departures from Host i — 1 which exceed size 
Si-i. They form a less bursty process than a Poisson Process since they are 
spaced apart by at least s,-_i. Throughout our analysis of TAGS, we make the 
assumption that the arrival process into Host i is a Poisson Process. 

5.2    Load Unbalancing 

The second reason why TAGS performs so well has to do with "load unbalancing." 
Observe that all the other task assignment policies we described specifically try 
to balance load at the hosts. Random and Round-Robin balance the expected 
load at the hosts, while Least-Work-Remaining goes even further in trying to 
balance the instantaneous load at the hosts. In TAGS we do the opposite. 

Figure 8 shows the load at Host 1 and the load at Host 2 for TAGS-opt-slowdown, 
TAGS-opt-waitingtime, and TAGS-opt-f airness as a function of a. Observe 
that all 3 flavors of TAGS (purposely) severely underload Host 1 when a is low 
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but for higher a actually overload Host 1 somewhat. In the middle range, or « 1, 
the load is balanced in the two hosts. 

We first explain why load unbalancing is desirable when optimizing overall 
mean slowdown of the system. We will later explain what happens when op- 
timizing fairness. To understand why it is desirable to operate at unbalanced 
loads, we need to go back to the heavy-tailed property. The heavy-tailed prop- 
erty says that when a distribution is very heavy-tailed (very low a), only a 
miniscule fraction of all tasks - the very largest ones - are needed to make up 
more than half the total load. As an example, for the case a = .2, it turns out 
that less than 10-6 fraction of all tasks are needed to make up half the load. In 
fact not many more tasks, still less than 10-4 fraction of all tasks, are needed 
to make up .99999 fraction of the load. This suggests a load game that can 
be played: We choose the cutoff point (si) such that most tasks ((1 - 10-4) 
fraction) have Host 1 as their final destination, and only a very few tasks (the 
largest 10-4 fraction of all tasks) have Host 2 as their final destination. Because 
of the heavy-tailed property, the load at Host 2 will be extremely high (.99999) 
while the load at Host 1 will be very low (.00001). Since most tasks get to run 
at such reduced load, the overall mean slowdown is very low. 

When the distribution is a little less heavy-tailed, e.g., a « 1, we can't play 
this load unbalancing game as well. Again, we would like to severely underload 
Host 1 and send .999999 fraction of the load to go to Host 2. Before we were able 
to do this by making only a very small fraction of all tasks (< 10-4 fraction) 
go to Host 2. However now that the distribution is not as heavy-tailed, a larger 
fraction of tasks must have Host 2 as its final destination to create very high 
load at Host 2. But this in turn means that tasks with destination Host 2 count 
more in determining the overall mean slowdown of the system, which is bad 
since tasks with destination Host 2 experience larger slowdowns. Thus we can 
only afford to go so far in overloading Host 2 before it turns against us. 

When get to a > 1, it turns out that it actually pays to overload Host 1 
a little. This seems counter-intuitive, since Host 1 counts more in determining 
the overall mean slowdown of the system because the fraction of tasks with 
destination Host 1 is greater. However, the point is that now it is impossible to 
create the wonderful state where almost all tasks are on Host 1 and yet Host 1 is 
underloaded. The tail is just not heavy enough. No matter how we choose the 
cutoff, a significant portion of the tasks will have Host 2 as their destination. 
Thus Host 2 will inevitably figure into the overall mean slowdown and so we 
need to keep the performance on Host 2 in check. To do this, it turns out we 
need to slightly underload Host 2, to make up for the fact that the task size 
variability is so much greater on Host 2 than on Host 1. 

The above has been an explanation for why load unbalancing is important 
with respect to optimizing the system mean slowdown. However it is not at all 
clear why load unbalancing also optimizes fairness. Under TAGS-opt-f airness, 
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Loads at hosts under TAGS-opt-waltingtime: 2 hosts, load .5 

Figure 8: Load at Host 1 as cofrfyared with Host 2 in a distributed 
server with 2 hosts and system, load .5 under (a) TAGS-opt-slowdown, (b) 
TAGS-opt-waitingtime, and (c) TAGS-opt-fairness. Observe that for very 
low a, Host 1 is run at load close to zero, and Host 2 is run at load close to 1, 
whereas for high a, Host 1 is somewhat overloaded. 
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(c) System load 0.7 
Results: MEAN SLOWDOWN using TAGS-opt-slowdown: 2 hosts, load .7 
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Figure 9: Mean slowdown under TAG3>9opt-slowdown in a distributed server 
with 2 hosts with system load (a) 0.3, (b) 0.5, and (c) 0.7. In each figure the 
mean slowdown under TAGS-opt-slowdown is compared with the performance 
of Random and Least-Work-Remaining. Observe that in all the figures TAGS 
outperforms the other task assignment policies under all a. However TAGS is 
most effective at lower system loads. 



the mean slowdown experienced by the small tasks is equal to the mean slowdown 
experienced by the big tasks. However it seems in fact that we're treating the 
big tasks unfairly on 3 counts: 

1. The small tasks run on Host 1 which has very low load (for low a). 

2. The small tasks run on Host 1 which has very low E {X2}. 

3. The small tasks don't have to be restarted from scratch and wait on a 
second line. 

So how can it possibly be fair to help the small tasks so much? The answer 
is simply that the small tasks are small. Thus they need low waiting times to 
keep their slowdown low. Big tasks on the other hand can afford a lot more 
waiting time. They are better able to amortize the punishment over their long 
lifetimes. It is important to mention, though, that this would not be the case 
for all distributions. It is because our task size distribution for low a is so 
heavy-tailed that the big tasks are truly elephants (way bigger than the smalls) 
and thus can afford to suffer more.5 

5.3    Different Loads 

Until now we have studied only the model of a distributed server with two hosts 
and system load .5. In this section we consider the effect of system load on the 
performance of TAGS. We continue to assume a 2 host model. Figure 9 shows the 
performance of TAGS-opt-slowdown on a distributed server with 2 hosts run at 
system load (a) 0.3, (b) 0.5, and (c) 0.7. In all three figures TAGS-opt-slowdown 
improves upon the performance of Least-Work-Remaining and Random under 
the full range of a, however the improvement of TAGS-opt-slowdown is much 
better when the system is more lightly loaded. In fact, all the task assign- 
ment policies improve as the system load is dropped, however the improve- 
ment in TAGS is the most dramatic. In the case where the system load is 0.3, 
TAGS-opt-slowdown improves upon Least-Work-Remaining by over 4 orders of 
magnitude at a = 1, by 6 or 7 orders of magnitude when a = .6 and by almost 
20 orders of magnitude when a = .2! When the system load is 0.7 on the other 

5 It may interest the reader to understand the degree of unfairness exhibited by 
TAGS-opt-slowdown and TAGS-opt-waitingtime. For TAGS-opt-slowdown, our analysis shows 
that the expected slowdown of the big tasks always exceeds that of the small tasks and 
the ratio increases exponentially as a drops, so that at a — 2, E {Slowdown(bigs)} « 
2-E{Slowdown(smalls)}, and at a = .2, E{Slowdown(bigs)} « 104-E {Slowdown(smalls)}. 
In contrast, for TAGS-opt-waitingtime, the expected slowdown of the big tasks is approxi- 
mately equal to that of the small tasks until a drops below 1, at which point the expected 
slowdown of the big tasks drops way below that of the small tasks, the ratio of bigs to smalls 
decreasing superexponentially as a drops. 
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hand, TAGS-opt-slowdown behaves comparably to Least-Work-Remaining for 
most a and only improves upon Least-Work-Remaining in the narrower range 
of .6 < a < 1.5. Notice however that at a «■ 1, the improvement of TAGS-opt-slowdown 
is still about 4 orders of magnitude. 

Why is the performance of TAGS so correlated with load? There are 2 reasons, 
both of which can be understood by looking at Figure 10 which shows the loads 
at the 2 hosts under TAGS-opt-slowdown in the case where the system load is 
(a) 0.3, (b) 0.5, and (c) 0.7. 

The first reason for the ineffectiveness of TAGS under high loads is that the 
higher the load, the less able TAGS is to play the load-unbalancing game described 
in Section 5.2. For lower a, TAGS reaps much of its benefit at the lower a by 
moving all the load onto Host 2. When the system load is only 0.5, TAGS is easily 
able to pile all the load on Host 2 without exceeding load 1 at Host 2. However 
when the system load is 0.7, the restriction that the load at Host 2 must not 
exceed 1 becomes a bottleneck for TAGS since it means that Host 1 can not be 
as underloaded as TAGS would like. This is seen by comparing Figure 10(b) and 
Figure 10(c) where in (c) the load on Host 1 is much higher for the lower a than 
it is in (b). 

The second reason for the ineffectiveness of TAGS under high loads has to 
do with what we call excess. Excess is the extra work created in TAGS by tasks 
being killed and restarted. In the 2-host case, the excess is simply equal to 
A -p2 • si, where A is the outside arrival rate, p2 is the fraction of tasks whose 
final destination is Host 2, and si is the cutoff differentiating small tasks from 
big tasks. An equivalent definition of excess is the difference between the actual 
sum of the loads on the hosts and h times the system load, where h is the 
number of hosts. Notice that the dotted line in Figure 10(a)(b)(c) shows the 
sum of the loads on the hosts. 

Until now we've only considered the distributed servers with 2 hosts and 
system load 0.5. For this scenario, excess has not been a problem. The reason 
is that for low a, where we need to do the severe load unbalancing, excess is 
basically non-existent for loads 0.5 and under, since p2 is so small (due to the 
heavy-tailed property) and since «i could be forced down. For high a, excess 
is present. However all the task assignment policies already do well in the high 
a region because of the low task size variability, so the excess is not much of a 
handicap. 

When we look at the case of system load 0.7, however, excess is much more 
of a problem, as is evidenced by the dotted line in Figure 10(c). One reason 
that the excess is worse is simply that overall excess increases with load because 
excess is proportional to A which is in turn proportional to load. The other 
reason that the excess is worse at higher loads has to do with Si. In the low a 
range, although pi is still low (due to the heavy-tailed property), s\ cannot be 
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forced low because the load at Host 2 is capped at 1. Thus the excess for low 
a is very high. To make matters worse, some of this excess must be heaped on 
Host 1. In the high a range, excess again is high because p2 is high. 

Fortunately, observe that for higher loads excess is at its lowest point at 
a K, 1. In fact, it is barely existent in this region. Observe also that the 
a p» 1 region is the region where balancing load is the optimal thing to do (with 
respect to minimizing mean slowdown), regardless of the system load. This 
"sweet spot" is fortunate because a « 1 is characteristic of many empirically 
measured computer workloads, see Section 3. 

6    Analytic Results for Case of Multiple Hosts 

Until now we have only considered distributed servers with 2 hosts. For the case 
of 2 hosts, we saw that the performance of TAGS-opt-slowdown was amazingly 
good if the system load was 0.5 or less, but not nearly as good for system load 
> 0.5. In this section we consider the case of more than 2 hosts. 

The phrase "adding more hosts" can be ambiguous because it is not clear 
whether the arrival rate is increased as well. For example, given a system with 
2 hosts and system load 0.7, we could increase the number of hosts to 4 hosts 
without changing the arrival rate, and the system load would drop to 0.35. On 
the other hand, we could increase the number of hosts to 4 hosts and increase 
the arrival rate appropriately (double it) so as to maintain a system load of 0.7. 
In our discussions below we will attempt to be clear as to which view we have 
in mind. 

One claim that can be made straight off is that an h host system (h > 2) 
with system load p can always be configured to produce performance which is 
at least as good as that of a 2 host system with system load p. To see why, 
observe that we can use the h host system (assuming h is even) to simulate a 2 
host system as illustrated in Figure 11: Rename Hosts 1 and 2 as Subsystem 1. 
Rename Hosts 3 and 4 as Subsystem 2. Rename Hosts 5 and 6 as Subsystem 3, 
etc. Now split the traffic entering the h host system so that 2/hth of the tasks 
go to each of the h/2 Subsystems. Now apply your favorite task assignment 
policy to each Subsystem independently - in our case we choose TAGS. Each 
Subsystem will behave like a 2 host system with load p running TAGS. Since 
each Subsystem will have identical performance, the performance of the whole 
h host system will be equal to the performance of any one subsystem. (Observe 
that the above cute argument works for any task assignment policy). 

Figure 12 shows the mean slowdown under TAGS-opt-slowdown for the case 
of a 4 host distributed server with system load 0.3. Comparing these results to 
those for the 2 host system with system load 0.3 (Figure 9(a)), we see that: 
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Figure 10: Load at Host 1 and Host Sunder TAGS-opt-slowdown shown for 
a distributed server with 2 hosts and system load (a) 0.3 (b) 0.5 (c) 0.7. The 
dotted line shows the sum of the loads at the 2 hosts. If there were no excess, 
the dotted line would be at (a) 0.6 (b) 1.0 and (c) 1.4 in each of the graphs 
respectively. In figures (a) and (b) we see excess only at the higher a range. 
In figure (c) we see excess in both the low a and high a range, but not around 
a « 1. 
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Results: MEAN SLOWDOWN using TAGS-opt-slowdown: 4 hosts, load .3 
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Figure 12: Mean slowdown under TAGS-opt-slowdown compared with other task 
assignment policies in the case of a distributed server with 4 hosts and system 
load 0.3. The cutoffs for TAGS-opt-slowdown were optimized by hand. In many 
cases it is possible to improve upon the results shown here by adjusting the cutoffs 
further, so the slight bend in the graph may not be meaningful. Observe that the 
mean slowdown o/TAGS almost never exceeds 1. 

1. The performance of Random stayed the same, as it should. 

2. The performance of Least-Work-Remaining improved by a couple orders 
of magnitude in the higher a region, but less in the lower a region. The 
Least-Work-Remaining task assignment policy is helped by increasing 
the number of hosts, although the system load stayed the same, because 
having more hosts increases the chances of one of them being free. 

3. The performance of TAGS-opt-slowdown improved a lot.   So much so, 
that the mean slowdown under TAGS-opt-slowdown is never over 6 and 
almost always under 1.   At o « 1, TAGS-opt-slowdown improves upon 
Least-Work-Remaining by 4-5 orders of magnitude. At a = .6, TAGS-opt-slowdown 
improves upon Least-Work-Remaining by 8-9 orders of magnitude.   At 
a = .2, TAGS-opt-slowdown improves upon Least-Work-Remaining by 
over 25 orders of magnitude! 

The enhanced performance of TAGS on more hosts may come from the fact 
that more hosts allow for greater flexibility in choosing the cutoffs.   However 
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it is hard to say for sure because it is difficult to compute results for the case 
of more than 2 hosts. The cutoffs in the case of 2 hosts were all optimized 
by Mathematica, while in the case of 4 hosts it was necessary to perform the 
optimizations by hand (and for all we know, it may be possible to do even 
better). For the case of system load 0.7 with 4 hosts we ran into the same type 
of problems as we did for the 2 host case with system load 0.7. 

6.1    The Server Expansion Performance Metric 

There is one thing that seems very artificial about our current comparison of 
task assignment policies. No one would ever be willing to run a system whose 
expected mean slowdown was 1010. In practice, if a system was operating with 
mean slowdown of 1010,' the number of hosts would be increased, without in- 
creasing the arrival rate, (thus dropping the system load) until the system's per- 
formance improved to a reasonable mean slowdown, like 3 or less. Consider the 
following example: Suppose we have a 2-host system running at system load .7 
and with variability parameter a = .6. For this system the mean slowdown un- 
der TAGS-opt-slowdown is on the order of 109, and no other task assignment pol- 
icy that we know of does better. Suppose however we desire a system with mean 
slowdown of 3 or less. So we double the number of hosts (without increasing the 
outside arrival rate). At 4 hosts, with system load 0.35, TAGS-opt-slowdown 
now has mean slowdown of around 1, whereas Least-Work-Remaining's slow- 
down has improved to around 108. It turns out we would have to increase 
number of hosts to 13 for the performance of Least-Work-Remaining to im- 
prove to the point of mean slowdown of under 3. And for Random to reach that 
level it would require an additional 109 hosts! 

The above example suggests a new practical performance metric for dis- 
tributed servers, which we call the server expansion metric. The server ex- 
pansion metric asks how many additional hosts must be added to the existing 
server (without increasing outside arrival rate) to bring mean slowdown down 
to a reasonable level (where we'll arbitrarily define "reasonable" as 3 or less). 
Figure 13 compares the performance of our task assignment policies according 
to the server expansion metric, given that we start with a 2 host system with 
system load of 0.7. For TAGS-opt-slowdown, the server expansion is only 3 for 
a = .2 and no more than 2 for all the other a. For Least-Work-Remaining, on 
the other hand, the number of hosts we need to add ranges from 1 to 27, as a 
decreases. Still Least-Work-Remaining is not so bad because at least its per- 
formance improves somewhat quickly as hosts are added and load is decreased, 
the reason being that both these effects increase the probability of a task find- 
ing an idle host. By contrast Random, shown in Figure 13(b), is exponentially 
worse than the others, requiring as many as 105 additional hosts when a « 1. 
Although Random does benefit from increasing the number of hosts, the effect 

26 



(a) Non-log scale 
Server expansion requirement 

30 

25 

20 

10 

..o.. Least-Work-Remaining 

—o— TAGS-opt-slowdown 

O. 

O.. 
•0---0. 

■O. 

O ■ • • G. 

<t>- '0-. 
^e-e--e--o- -e—o—o—o—o—o—e- -e--e--e-'e-e-€>--$ 

'o    ■•(p 
 I I I I I ! _i : 1  

0.2 0.4 0.6 0.8 1 1.2 
alpha 

1.4 1.1 1.1 

(b) Log scale 
Server expansion requirement 

10" 

•o- Random 

,o.. Least-Work-Remaining 

-o— TAGS-opt-slowdown 

no|:°:t-gig-g-.f-^-^-^-^^^-^-^^>-.-.^.. 
0.2 0.6 0.8 1 1.2 

alpha 

Figure 13: Server expansion requirement for each of the task assignment policies, 
given that we start with a 2 host systernnwith system load of 0.7. (a) Shows just 
Least-Work-Remaining and TAGS-opt-slowdown on a non-log scale (b) Shows 
Least-Work-Remaining, TAGS-opt-slowdown, and Random on a log scale. 



Second Moment of Bounded Pareto Distribution B(k,p,alpha) where p = 107 

alpha 

Figure 14: Second moment of B(k,p,a) distribution, where now the upper 
bound, p, is set at p = 107, rather than 10*0. The mean is held fixed at 3000 as 
a is varied. Observe that the coefficient of variation now ranges from 2, when 
a = 2 to 33, when a = .2. 

isn't nearly as strong as it is for TAGS and Least-Work-Remaining. 

7    The effect of the range of task sizes 

The purpose of this section is to investigate what happens when the range of 
task sizes (difference between the biggest and smallest possible task sizes) is 
smaller than we have heretofore assumed, resulting in a smaller coefficient of 
variation in the task size distribution. 

Until now we have always assumed that the task sizes are distributed ac- 
cording to a Bounded Pareto distribution with upper bound p = 1010 and fixed 
mean 3000. This means, for example, that when a « 1 (as agrees with empirical 
data), we need to set the lower bound on task sizes to k = 167. However this 
implies that the range of task sizes spans 8 orders of magnitude! 

It is not clear that most applications have task sizes ranging 8 orders in mag- 
nitude. In this section we rederive the performance of all the task assignment 
policies when the upper bound p is set to p = 107, while still holding the mean 
of the task size distribution at 3000. This means, for example, that when a « 1 

J 
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Results: MEAN SLOWDOWN using TAGS-opt-slowdown: 2 hosts, load .5,p =1(3 
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Figure 15: Mean slowdown under TAGS-opt-slowdown in a distributed server 
with 2 hosts with system load 0.5, as compared with the performance of Random 
and Least-Work-Remaining. In this set of results the task size distribution is 
B(k, p, a), where p= 107. 

(as agrees with empirical data), we need to set the lower bound on task sizes to 
It = 287, which implies the range of task sizes spans just 5 orders of magnitude. 

Figure 14 shows the second moment of the Bounded Pareto task size distri- 
bution as a function of a when p - 107. Comparing this figure to Figure 4, we 
see that the task size variability is far lower when p = 107 and therfore so is the 
coefficient of variation. 

Lower variance in the task size distribution suggests that the improvement 
of TAGS over the other task assignment policies will not be as dramatic as in 
the higher variability setting (when p — 1010). This is in fact the case. What is 
interesting, however, is that even in this lower variability setting the improve- 
ment of TAGS over the other task assignment policies is still impressive, as shown 
in Figure 15. Figure 15 shows the mean slowdown of TAGS-opt-slowdown as 
compared with Random and Least-Work-Left for the case of two hosts with 
system load 0.5. Observe that for awl, TAGS improves upon the other task 
assignment policies by over 2 orders of magnitude. As a drops, the improvement 
increases. This figure should be contrasted with Figure 9(b), which shows the 
same scenario where p = 1010. 
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8    Conclusion and Future Work 

This paper is interesting not only because it proposes a powerful new task 
assignment policy, but more so because it challenges some natural intuitions 
which we have come to adopt over time as common knowledge. 

Traditionally, the area of task assignment, load balancing and load sharing 
has consisted of heuristics which seek to balance the load among the multiple 
hosts. TAGS, on the other hand, specifically seeks to unbalance the load, and 
sometimes severely unbalance the load. Traditionally, the idea of killing a task 
and restarting from scratch on a different machine is viewed with skepticism, 
but possibly tolerable if the new host is idle. TAGS, on the other hand, kills tasks 
and then restarts them at a target host which is typically operating at extremely 
high load, much higher load than the original source host. Furthermore, TAGS 
proposes restarting the same task multiple times. 

It is interesting to consider further implications of these results, outside the 
scope of task assignment. Consider for example the question of scheduling CPU- 
bound tasks on a single CPU, where tasks are not preemptible and no a priori 
knowledge is given about the tasks. At first it seems that FCFS scheduling is 
the only option. However in the fact of high task size variability, FCFS may 
not be wise. This paper suggests that killing and restarting tasks may be worth 
investigating as an alternative, if the load on the CPU is low enough to tolerate 
the extra work created. 

Task assignment also has applications outside of the context of a distributed 
server system described in this paper. A very interesting recent paper by Shaikh, 
Rexford, and Shin [15] discusses routing of IP flows (which also have heavy- 
tailed size distributions) and recommends routing long flows differently from 
short flows. 
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9    Appendix 

This section contains the formulas we used in evaluating the TAGS task assign- 
ment policy. We will use the notation defined in Table 1. 

The following observation will be helpful in understanding the first batch of 
formulas below: Observe that the original tasks, all of which enter Host 1, are 
have sizes i.i.d. from B(k,p, a). However, once a task is moved to Host 2, we 
know that its size exceeds sx. Conditional on this knowledge, we can assume 
that the tasks entering Host 2 have sizes i.i.d. from B(si,p,a). Likewise the 
tasks entering Host j have sizes i.i.d. from B(sj_i,p, a). Observe also that the 
tasks whose final destination is Host j have sizes i.i.d. from B{sj-\,j, a). 

The formulas below assume knowledge of the cutoff points so, «i,..., «A . 
These are determined using mathematica to optimize either mean slowdown, 
mean waiting time or fairness, as desired. 

E{XJ'} 

xka 
-a-l 

1 - (k/p)a 

f Jk 

E{X} 

f(x) ■ x3dx = < 

■ h ■ p 

k < x < p 

(a-j)(.l-0</p)Q) r J 

iri7FJ • (lnp - Ink) if a = j = 1 

=   {/"^'NW'«-^ 
hostpi    =    y]pi 
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E H) - £ •<m.A— 
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«»r.., ocr-r") : if a ^ j (a-jjjl-tsi-x/si)«) 
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J 

B(k,p,a) 

/(*) 
a 

«o,«i, ■»«A 

Si 

Number of hosts 
Task size distribution 
Upper bound on task size distribution 
Lower bound on task size distribution 
Probability mass function for B(k,p, a) 
Heavy-tailed parameter 
Task size cutoffs 
Upper bound on task size seen by Host i 

hostpi 

host pi 
hostXi 

E{Xt} 
EjhostXj} w 
E hostXf \ 
Eft/*.'} 
E{hostWj} 
V{Wj} 
E{5,} 
E{W} 
E{g} 

Outside arrival rate into system 
System load 
Load at Host i 
Fraction of tasks whose final destination is Host i, 
i.e., whose size is between «,-_! and s,-. 
Fraction of tasks which spend time at Host 
Arrival rate into Host 
Mean task size under B(k,p,a) distribution 
jth moment of task size distribution B(k,p, a) 
Expected size of tasks whose final destination is Host i. 
Expected size of tasks which spend time at Host i 
Second moment of size of tasks whose final destination is Host i. 
Second moment of size of tasks which spend time at Host i 
Expected 1/size of tasks whose final destination is Host i 
Expected waiting time at Host 
Total expected waiting time for tasks with final destination Host 
Expected slowdown for tasks with final destination Host, i 
Expected waiting time for tasks under TAGS 
Expected slowdown for tasks under TAGS 

Excess Total excess work being done 

Table 1: Notation for analysis o/TAGS 
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hostpi    =    hostXi ■ E{hostX,} 

E{I/A7}   =   E {irr''} 

There are two equivalent ways of defining excess. We show both below and 
check them against each other in our computations. 

true-sum-of-loads   =    }. hostpi 
■   ■   »=i 

desired-sum-of-loads    —    h ■ p 

Excess a    =    true-sum-of-loads — desired-sum-of-loads 
h 

Excess/,    =    / _, hostXj ■ g,_i 
.»=2 

Excess    =    Excessa = Excessb 

Computing mean waiting time and mean slowdown follows from Theorem 1, 
except for one fudge, as explained earlier in the text: we will assume that the 
arrival process into each host is a Poisson Process. Observe that in computing 
mean slowdown, we have to be careful about which jobs we're averaging over. 
The calculation works out most easily if we condition on the final destination 
of the job, as shown below. 

E {hostWi}    =    hostXi ■ E {hostX?} /(2(1 - hostpi)) 
i 

E{Wi}    =    5^E{Ä<MrfW,-}" 

'J=1 

h 

E{W}    =    ^E{W,}-Pi 
»=i 

E{Si}    =   E{Wi}-E{l/Xi} 
h 

E{S]    =    J2E^}-Pi 
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